Course	Credit	Advenced Liest and Mass Transfer	Contact	Total
Code	Hours	Advanced Heat and Mass Transfer	Hrs/Week	Contact Hrs
TEE-815	(Th-Pr)	(Elective)	(Th-Pr)	(Th-Pr)
	3-0		3-0	45-0

Course Outline:

i. Conduction

One dimensional and two dimensional, steady state conduction. One dimensional and two dimensional transient conduction.

ii. Convection

Convection boundary layers. Laminar and turbulent flow. External flow. Internal flow. Free convection. Boiling and condensation. Pool boiling, forced convection boiling. Laminar and turbulent film condensation.

iii. Heat Exchangers

Heat exchangers types, log mean temperature. The Effectiveness - NTU Method.

iv. Radiation

Radiation intensity, emission, irradiation, radiosity. Surface absorption, reflection and transmission. Kirchaws law. Radiation exchange between surfaces. Diffusion Mass Transfer (5%) Fick's law of diffusion. Conservation of species. Evaporation.

v. Numerical methods in heat transfer

Eligibility Criteria:

B.E in Mech., Elect (Power), Chemical, Industrial, ProcessB.S (4-years) Or M.Sc. degrees in Physics

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
----	-------	-----------	----------	---------

No.			Code	
1.	Heat and Mass Transfer	Yunus A. Çengel	YA	Text Book
	A practical approach			
2.	Advanced Heat and Mass	Amir Faghri, Yuwen	AF	Reference
	Transfer	Zhang, John Howell		
3.	Computational Methods	Pradip Majumdar, Pradip	PM	Reference
	for Heat and Mass	Majumdar		
	Transfer			
4.	Heat Exchangers:	Sadik Kakaç, Hongtan Liu	SK	Reference
	Selection, Rating, and			
	Thermal Design,			
5.	Engineering Heat Transfer	William S. Janna	WS	Reference
6.	Transient Heat Transfer	Annaratone, Donatello	AD	Reference

Course Objectives:

The goals of this course are:

- To Develop a strong physical and conceptual understanding of heat and mass transfer processes; and
- Learn about their application to thermal energy systems and other technologies.

Learning outcome:

This course is designed to introduce the students with phenomena of heat and mass transfer, to develop methodologies for solving a wide variety of practical engineering problems, and to provide useful information concerning the performance and design of particular systems and processes. A knowledge-based design problem requiring the formulations of solid conduction and fluid convection and the technique of numerical computation progressively elucidated in different chapters will be assigned and studied in detail.

Topics Covered:

No.	Topics	Book	Contact
			Hours
1.	Conduction Heat transfer	YA,AF	12
	 Differential equations for heat conduction in solid 	& AD	
	materials.		
	 Solutions for different special cases. Fin efficiency for 		
	different fin designs		
	 Two and three-dimensional cases at stationary 		
	conditions.		
	 Laplace equation. The form factor. Numerical solution 		
	methods and analogy methods. Numerical solutions of		
	unsteady conduction and steady conduction		
	 Non-stationary cases. Solutions for flat surfaces and 		
	cylinders		
	 The "Lumped heat capacity" method. 		
	 Unsteady state conduction in solids with infinite 		
	thermal conductivity, infinite thick-solids, periodic		
	variation		
2.	Convection heat transfer	YA,AF	10
	 Forced convection inside tubes and ducts 	& AD	
	 Forced convection over exterior surfaces 		
	Heat transfer at natural (free) convection, Grashof's		
	number. Boundary layer equations in integral form		
	with solutions for natural convection for vertical plates		
	Empirical relationships for laminar and turbulent		
	boundary layers at vertical and horizontal plates,		
	cylinders and slots		
	 Transitional Flow in tubes 		
3	Radiation Heat Transfer	YA&	7
	Heat transfer at radiation	AF	
	The "black body" concept. Emission and absorption		
	numbers. Radiant efficiency, angular factor.		
	Heat transfer at irradiated surfaces		

	Heat transfer at condensation		
	 Nusselt's theory, condensation on and in horizontal 		
	pipes		
	 Heat transfer at boiling and various types of boiling, 		
	the boiling curve		
4.	Heat exchangers	YA; SK	8
	• Different types of heat exchangers, Fouling Factor,	& AF	
	logarithmic mean temperature difference,		
	temperature effectiveness, NTU, Selection		
	Techniques of the heat exchangers.		
5.	Mass Transfer	YA&	8
	Introduction, Fick's law, General equation of mass	AF	
	diffusion steady state, diffusion through a plain		
	membrane, diffusion of water vapor through air, Mass		
	transfer coefficient, convective mass transfer		